Displacement and Transference

As an experimental researcher it is normally always my preferred choice to share and discuss any theory I may hold about my work and the larger subject area according to the progression of the experimental work, and whether it corroborates or refutes any specific theory, principle, conjecture, or hypothesis I may hold. The principles that appear clear in my mind, regarding the displacement and transference of electric power, have guided the entire direction of my research efforts over a good many years to establish the validity or otherwise of these principles. In other words, I am designing and building the nature of my experiments in such a way as to attempt to reveal and test these working hypotheses and conjectures, and in so doing uncover and make further known the inner workings of the electrical wheel of nature.

Following interest and recent questions with regard to the nature of Displacement and Transference of electric power, the use of this terminology needs to be clarified in more detail, and ahead of the necessary supporting experimental results, which is work in progress at this time. The implications of these two mechanisms (displacement and transference) are vast, and part 1 of this topic is intended only as a summary and clarification of these principles as I see them, and to pave the way for more detailed discussion in subsequent parts, and of course further development as experimental results dictate.

It is important to first establish that with regard to displacement I am not referring to Maxwell’s displacement current, but rather to a more underlying phenomenon that precedes what we currently measure electrically via voltages and currents, and that which precedes the linear inter-action between the electric and magnetic fields of induction, or in other words the mechanism of transference.

In explaining what I mean by this I would first like to stress that these are working theories, hypotheses, and conjectures which are guiding me in a programme of experimentation to ascertain their validity or otherwise, and I am by no means claiming them to be true, tested, or proven. Experiments and results will establish or refute the validity of these theories all in good time. And even more, it is not enough for my own experiments to show the validity of these theories, but also they require experimentation and corroboration from others. How I have come to them is not easy to explain, other than to say that during many years of working with science and engineering, along with certain other subjects, and by studying electrical “over-unity” examples, circuits, and phenomena, they have come to me in the form of intuitive insights, light bulb moments, and after long nights trying to solve seemingly unrelated problems both theoretically and experimentally.

It is easier to discuss transference first as this can be readily measured, experimented, and understood from the huge edifice of knowledge available in the fields of electromagnetism and electrical and electronic engineering. In very short summary, transference refers to the electrical phenomenon that results from the linear inter-action of the electric and magnetic fields of induction, at best, spatially out of phase and temporally in phase, but overall an incoherent phenomenon.

This inter-action between these two fields is linear and whose results are understood very well by employing Maxwell’s four primary equations as synthesised by Heaviside[1]. In turn this yields the telegrapher’s equation, the resolution of two linear differential equations, which can be used to very well model, simulate, and measure the electrical properties of a circuit network, and has been very well discussed and explored by Dollard[2,3] and later EF[4] in the form of the Heaviside equation:

(1)   \begin{equation*} ZY = h(RG + XB) + j(XG - RB) \end{equation*}

In other words, electrical energy is transferred in a linear fashion (propagates) from one point to another in a well-defined time, and with well-defined characteristics, which result from the inter-action of the electric and magnetic fields of induction with the surrounding medium, materials, and boundary conditions. Transference is the common mechanism which yields the known and observed electromagnetic and electrical circuit properties, irrespective of the model by which the transference is accounted for, whether it be classical mechanics and electromagnetism, quantum electrodynamics, or other modern physical theory.

Transference will always result in discharge, dissipation, and ultimately loss of the available electrical energy to the surrounding and intervening medium (of which the circuit also belongs). Transference is the most basic mechanism by which electrical energy can be transferred from source to load in meeting the designed and prescribed purpose and “need” of the circuit. It is an incoherent mechanism, which always results in loss and at best a temporary rejuvenation of the system, and yet is currently our most “advanced” mechanism by which we can utilise electrical energy to do our work. Transference can be entirely measured via voltage and currents distributed over n different frequencies with n different phase relationships, and hence is entirely measurable with electrical and electronic equipment of all varieties.

In contrast, displacement is a very different mechanism to transference, and results from the coherent inter-action between the electric and magnetic fields of induction where they are in phase both spatially and temporally, a condition that is never possible with transference and not normally observed within electrical circuit measurements. Accordingly displacement is a phenomenon where the electric and magnetic fields of induction cannot be distinguished from the other electrically, they are essentially undifferentiated, both are acting in the system and acting together as one induced field. This yields the very important property that the extent of the action does not vary with distance (space) and hence between source and load is a displacement of electric power rather than a transfer of electric power. When power is displaced that available at the source is also available at the load and at any point within the circuit connecting them. Displacement also leads to regeneration of the electrical system when source and load are correctly connected and the purpose or “need” of the circuit is established and maintained in a state of dynamic equilibrium.

Because the electric and magnetic fields of induction are spatially in-phase or coherent, measurement via voltages and currents does not appear easily possible, putting the phenomenon and displacement events outside the range of common electrical measurement equipment. What does appear to be observable is the impact that displacement has on form within a circuit, which includes:

1. Compression of oil in a tube.

2. Light from a bulb without radiated heat.

3. Attractive and repulsive forces on conductive materials.

4. Orthogonal streamers within an electric discharge.

5. Charging of capacitors and loads from “radiated” energy.

6. Charging of capacitors and regenerative properties in non-linear electrical systems.

7. Distribution of electric power without loss between multiple loads and a source.

8. Regeneration of otherwise expended electrical storage systems.

9. Telluric distribution of electric power without loss.

10. Telluric generation of electric power.

11. Generation of additional energy within a system.

In all these forms of unusual electric phenomena displacement appears to be a deeper driving mechanism. This mechanism appears always present in any electrical system or circuit, yet hidden behind the more basic mechanism of transference. Only when the need established dynamically in the circuit cannot be met (balanced) through transference, is the mechanism of displacement directly observable. In order to attempt to observe and find a way to measure and characterise displacement I have found it necessary to explore non-linear events within electric circuits, that is, starting with a circuit in steady state equilibrium and then unbalancing the fields of induction to such a degree that they cannot immediately be balanced through transference. In this state the effects of displacement can be readily observed along with the subsequent changes electrically in the circuit when transference catches-up with the initial displacement.

Any electric system that is exposed to repetitive non-linear events will show the effects of displacement albeit in low tension cases so small as to easily pass undetected, e.g. when a steady current has been established in the primary inductor of a transformer and is then interrupted, leading to the collapse of the magnetic field and a return of the stored energy, and with the assistance of displacement a higher than expected induced emf in the secondary of the transformer. However when the tension of the system increases it becomes much easier to observe the effects of the displacement mechanism, and hence experimental arrangements that introduce non-linear events in otherwise high tension balanced power transfer systems are very suitable for the exploration into the difference between the mechanisms of displacement and transference. Switched (impulse) systems appear to lead to unusual electrical phenomena that are the result of the displacement mechanism being exposed in the process of rebalancing the system dynamics and before transference takes over as the secondary mechanism of establishing the steady state, (transference being referred to as the primary state in our current understanding of electricity). In addition, any electrical system where transference can be “held-of” from establishing the steady state, will manifest and display the unusual electrical phenomena that result from the displacement mechanism.

An example of this concept relates to Tesla’s account of observing the closing of the main switch between a high tension DC dynamo and the parallel railway tracks with a distant load. In this case the purpose and hence electrical characteristics of the circuit are already established, however the pressure of electrification at the dynamo cannot establish the steady state electric power transfer immediately within the electrical system. In this case the process of transference of the differentiated electric and magnetic fields of induction cannot propagate round the circuit with sufficient velocity, leading to a condition where the purpose of the circuit is in an “invalidated” or transient state. In this case the mechanism of displacement must initiate and be called-forth, establishing the fields of induction into the proper and required states, and so leading to the observable manifestation of orthogonal, filament-like streamers, extending into the railway tracks for a brief moment as the primary mechanism of electric power balance, whereupon transference takes over yielding the known and measurable characteristics of electric power distribution through a parallel wire transmission line. It is by virtue of the enormous pressure of the DC dynamo, and the non-linear event of closing the main switch connection between the two, that in this case reveals the process of displacement so clearly to the observer.

In summary, for this introduction on the concepts of displacement and transference, displacement is a coherent phenomenon and mechanism where the electric and magnetic fields of induction are in phase spatially and temporally, and are effectively unified to one overall induction field. It is ever-present at a deeper level within electricity guiding the manifestation of electrical properties towards the purpose required of the circuit, medium, and boundary conditions presented to it. The mechanism of displacement is revealed in action when the continuity of the need of the circuit to re-balance to the steady state is disrupted or held-of, and cannot in the moment be addressed by the process of transference. In this case the mechanism of displacement is called-forth, and whose action on the form can be observed, and is usually characterised by an injection of additional energy required to initiate the re-balance (speed-up) the process of transference. In this way displacement “moves” the now differentiated electric and magnetic fields of induction to the correct spatial and temporal synchronisation to allow transference to establish the final steady state electric power transfer according to the circuit, medium, and boundary properties. In turn this leads to the necessary changes in voltages and currents throughout the circuit and medium which can be readily measured with normal laboratory equipment. It could be seen that the mechanism of displacement relates to the principle of electricity, whereas the mechanism of transference relates to the properties of electric power.

In final conclusion to this part, displacement and transference are guiding principles, and also mechanisms, that explored and understood can show how our electrical machines, apparatus, and experiments can co-operate with the fundamental wheelwork of nature, and in so doing harness those underlying principles that lead to a more balanced and unified approach to the greater understanding of electricity, and in turn to the application of electric power to do work.


1. Heaviside O., Electromagnetic Theory – Volume 1,  “The Electrician” Printing and Publishing Company Limited, 1893.

2. Dollard, E., Four Quadrant Representation of Electricity, A&P Electronic Media, 2013.

3. Dollard, E., A Common Language for Electrical Engineering – Lone Pine Writings, A&P Electronic Media, 2015.

4. Dollard, E. and Energetic Forum Members, Energetic Forum, 2008 onwards.